485 research outputs found

    Modelling the driving forces of Sydney's urban development (1971-96) in a cellular environment

    Get PDF
    [Abstract]: This paper demonstrates a flexible implementation of rules to control the simulation of urban development of Sydney from 1971 to 1996 using a cellular automata model. Five key factors, including the self propensity for development and neighbourhood support, slope constraint, transportation support, terrain and coastal proximity attractions and urban planning support are introduced into the model in a spatially explicit format, which generated a realistic estimation of the extent and timing of Sydney's urban development. With the flexibility of rule implementation within the model, more rules can be added as new 'If-Then' statements to fine-tune the model, provided that a good understanding of the rule is maintained and accurate data are collected

    Evaluating eight field and remote sensing approaches for mapping the benthos of three different coral reef environments in Fiji

    Get PDF
    Monitoring of coral reef environments require accurate, timely and relevant information on their composition and condition. These environments are challenging to map due to their variation in reef type, remoteness, extent, benthic cover composition and variable water clarities. This work evaluates the accuracy, cost and relevance of eight commonly used benthic cover mapping approaches applied in three different coral reef environments in Fiji. The eight mapping techniques varied in field data source (local knowledge, point and transect surveys), image data (Quickbird 2 and Landsat 5 TM), level of image correction (none or atmospheric) and processing approaches (delineation and supervised classification). The eight mapping approaches were assessed in terms of their: map accuracy; production time and cost. Qualitative assessment was carried out by map users representing the local marine monitoring agencies. These map assessments showed that users and producers preferred mapping approaches based on: supervised classification of Quickbird imagery integrated with a basic field data. This approach produced an accurate map within a short time; with low cost that suited the user's purpose. The findings from this work demonstrate how variations in coral reef environments, and map purpose and resources management requirements affected the user's selection of a suitable mapping approach. ©2008 COPYRIGHT SPIE--The International Society for Optical Engineering

    Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps

    Get PDF
    Our ability to map coral reef environments using remote sensing has increased through improved access to: satellite images and field survey data at suitable spatial scales, and software enabling the integration of data sources. These data sets can be used to provide validated maps to support science and management decisions. The objective of this paper was to compare two methods for calibrating and validating maps of coral reef benthic communities derived from satellite images captured over a variety of Coral Reefs The two methods for collecting georeferenced benthic field data were: 1), georeferenced photo transects and 2), spot checks. Quickbird imagery was acquired for three Fijian coral reef environments in: Suva, Navakavu and Solo. These environments had variable water clarity and spatial complexity of benthic cover composition. The two field data sets at each reef were each split, and half were used for training data sets for supervised classifications, and the other half for accuracy assessment. This resulted in two maps of benthic communities with associated mapping accuracies, production times and costs for each study-site. Analyses of the spatial patterns in benthic community maps and their Overall and Tau accuracies revealed that for spatially complex habitats, the maps produced from photo transect data were twice as accurate as spot check based maps. In the context of the reefs examined, our results showed that the photo- transect method was a robust procedure which could be used in a range of coral reef environments to map the benthic communities accurately. In contrast, the spot check method is a fast and low cost approach, suitable for mapping benthic communities which have lower spatial complexity. Our findings will enable scientists, technicians and managers to select appropriate methods for collecting field data to integrate with high spatial resolution multi-spectral imagery to create validated coral reef benthic community maps. © 2010 Society of Photo-Optical Instrumentation Engineer

    How does the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation (FPAR) product relate to regionally developed land cover and vegetation products in a semi-arid Australian savanna?

    Get PDF
    Spatio-temporally variable information on total vegetation cover is highly relevant to water quality and land management in river catchments adjacent to the Great Barrier Reef, Australia. A time series of the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation (FPAR; 2000-2006) and its underlying biome classification (MOD12Q1) were compared to national land cover and regional, remotely sensed products in the dry-tropical Burdekin River. The MOD12Q1 showed reasonable agreement with a classification of major vegetation groups for 94% of the study area. We then compared dry-seasonal, quality controlled MODIS FPAR observations to (i) Landsat-based woody foliage projective cover (wFPC) (2004) and (ii) MODIS bare ground index (BGI) observations (2001-2003). Statistical analysis of the MODIS FPAR revealed a significant sensitivity to Landsat wFPC-based Vegetation Structural Categories (VSC) and VSC-specific temporal variability over the 2004 dry season. The MODIS FPAR relation to 20 coinciding MODIS BGI dry-seasonal observations was significant (ρ < 0.001) for homogeneous areas of low wFPC. Our results show that the global MODIS FPAR can be used to identify VSC, represent VSC-specific variability of PAR absorption, and indicate that the amount, structure, and optical properties of green and non-green vegetation components contribute to the MODIS FPAR signal

    Mapping olive varieties and within-field spatial variability using high resolution QuickBird imagery

    Get PDF
    [Abstract]: The growth of the Australian olive (Olea europaea L.) industry requires support from research to ensure its profitability and sustainability. To contribute to this goal, our project tested the ability of remote sensing imagery to map olive groves and their attributes. Specifically, this study aimed to: (a) discriminate olives varieties; and to (b) detect and interpret within-field spatial variability. Using high spatial resolution (2.8m) QuickBird multispectral imagery acquired over Yallamundi (southeast Queensland) on 24 December 2003, both visual interpretation and statistical (divergence) measures were employed to discriminate olive varieties. Similarly, the detection and interpretation of within-field spatial variability was conducted on enhanced false colour composite imagery, and confirmed by the use of statistical methods. Results showed that the two olive varieties (i.e. Kalamata and Frantoio) can be visually differentiated and mapped on the enhanced image based on texture. The spectral signature plots showed little difference in the mean spectral reflectance values, indicating that the two varieties have a very low spectral separability. In terms of within-field spatial variability, the presence or absence of Rhodes grass (Chloris gayana) was detected using visual interpretation, corroborated by the results of quantitative statistical measures. Spatial variability in soil properties, caused by the presence of a patch of sandy soil, was also detected visually. Finally, the “imprint” of former cover-type or land-use prior to olive plantation establishment in 1998 was identified. More work is being done to develop image classification techniques for mapping within-field spatial variability in olive varieties, biomass and condition using hyperspectral image data, as well as interpreting the cause of observed variability

    Hyperspectral analysis of chlorophyll content and photosynthetic capacity of coral reef substrates

    Get PDF
    Few studies have assessed the biophysical properties controlling reflection and absorption of light in coral reef environments and their relationships with quantitative measures of reef health and productivity. The present article examines the relationship between spectral reflectance, photosynthetic capacity, and chlorophyll a from common coral reef substrates. Reflectance readings of several targets (massive corals Montipora sp., n=49, and Porites sp., n=80; macroalgae Chlorodesmis sp., n=24; and sediment interspersed with benthic microalgae, n=35) were obtained in situ on Heron Reef, southern Great Barrier Reef (23 degrees 27'S, 151 degrees 55'E). Measurements of photosynthetic capacity and chlorophyll content were acquired simultaneously. Linear correlations were examined between spectral reflectance at all wavelengths and both photosynthetic capacity and pigment content (Chl a). Reflectance plots for all targets exhibited an absorption feature centered at 675 nm, and spectral reflectance at this wavelength decreased with increasing Chl a levels. The strength of this correlation varied between features, being highest for Porites sp. and lowest for sediment, highlighting the complexities of coral reef environments and the difficulties associated with relating spectral reflectance to biophysical properties. Photosynthetic capacity did not exhibit statistically significant correlations to spectral reflectance or absorption at any wavelength. Our results demonstrate the capabilities and difficulties associated with field scale hyperspectral data for measuring select biophysical properties of coral reefs and the need for assessment of the capabilities of airborne and satellite imaging sensors for similar purposes

    Pre-processing training data improves accuracy and generalisability of convolutional neural network based landscape semantic segmentation

    Full text link
    In this paper, we trialled different methods of data preparation for Convolutional Neural Network (CNN) training and semantic segmentation of land use land cover (LULC) features within aerial photography over the Wet Tropics and Atherton Tablelands, Queensland, Australia. This was conducted through trialling and ranking various training patch selection sampling strategies, patch and batch sizes and data augmentations and scaling. We also compared model accuracy through producing the LULC classification using a single pass of a grid of patches and averaging multiple grid passes and three rotated version of each patch. Our results showed: a stratified random sampling approach for producing training patches improved the accuracy of classes with a smaller area while having minimal effect on larger classes; a smaller number of larger patches compared to a larger number of smaller patches improves model accuracy; applying data augmentations and scaling are imperative in creating a generalised model able to accurately classify LULC features in imagery from a different date and sensor; and producing the output classification by averaging multiple grids of patches and three rotated versions of each patch produced and more accurate and aesthetic result. Combining the findings from the trials, we fully trained five models on the 2018 training image and applied the model to the 2015 test image with the output LULC classifications achieving an average kappa of 0.84 user accuracy of 0.81 and producer accuracy of 0.87. This study has demonstrated the importance of data pre-processing for developing a generalised deep-learning model for LULC classification which can be applied to a different date and sensor. Future research using CNN and earth observation data should implement the findings of this study to increase LULC model accuracy and transferability
    corecore